Difference between revisions of "Nintendo 64"

From Mod My Classic Wiki
Jump to: navigation, search
(Color variants)
(Programming characteristics)
Line 122: Line 122:
  
 
The system supports [[standard-definition television|standard-definition]] resolutions up to [[480i]] ([[576i]] for PAL units). Few games make use of this mode, and most of those which do also require use of the [[Nintendo 64 accessories#Expansion Pak|Expansion Pak]] RAM upgrade. Most games instead use the system's [[Low-definition television|low-definition 240p]] (288p for PAL models) modes. A number of games also support widescreen display ratios using either [[anamorphic widescreen]] or [[Letterboxing (filming)|letterboxing]]. Games with support for this include ''[[Banjo-Tooie]]'', ''[[Donkey Kong 64]]'', ''[[GoldenEye 007 (1997 video game)|GoldenEye 007]]'', ''[[007: The World Is Not Enough (Nintendo 64)|007: The World Is Not Enough]]'', ''[[Jet Force Gemini]]'', ''[[Perfect Dark]]'', ''[[Starshot: Space Circus Fever]]'', ''[[Turok 2: Seeds of Evil]]'', ''[[Turok 3: Shadow of Oblivion]]'', ''[[Mission: Impossible (1998 video game)|Mission Impossible]]'', ''[[Hybrid Heaven]]'', and ''[[South Park (video game)|South Park]]''.{{Citation needed|date=May 2015}}
 
The system supports [[standard-definition television|standard-definition]] resolutions up to [[480i]] ([[576i]] for PAL units). Few games make use of this mode, and most of those which do also require use of the [[Nintendo 64 accessories#Expansion Pak|Expansion Pak]] RAM upgrade. Most games instead use the system's [[Low-definition television|low-definition 240p]] (288p for PAL models) modes. A number of games also support widescreen display ratios using either [[anamorphic widescreen]] or [[Letterboxing (filming)|letterboxing]]. Games with support for this include ''[[Banjo-Tooie]]'', ''[[Donkey Kong 64]]'', ''[[GoldenEye 007 (1997 video game)|GoldenEye 007]]'', ''[[007: The World Is Not Enough (Nintendo 64)|007: The World Is Not Enough]]'', ''[[Jet Force Gemini]]'', ''[[Perfect Dark]]'', ''[[Starshot: Space Circus Fever]]'', ''[[Turok 2: Seeds of Evil]]'', ''[[Turok 3: Shadow of Oblivion]]'', ''[[Mission: Impossible (1998 video game)|Mission Impossible]]'', ''[[Hybrid Heaven]]'', and ''[[South Park (video game)|South Park]]''.{{Citation needed|date=May 2015}}
 
== Programming characteristics ==
 
The programming characteristics of the Nintendo 64 present unique challenges, with distinct potential advantages. ''[[The Economist]]'' described effective programming for the Nintendo 64 as being "horrendously complex". As with many other game consoles and other types of embedded systems, the Nintendo 64's architectural optimizations are uniquely acute, due to a combination of oversight on the part of the hardware designers, limitations on 3D technology of the time, and manufacturing capabilities.
 
 
As the Nintendo 64 reached the end of its lifecycle, hardware development chief [[Genyo Takeda]] repeatedly referred to the programming challenges using the word ''hansei'' ("reflective regret"). Looking back, Takeda said "When we made Nintendo 64, we thought it was logical that if you want to make advanced games, it becomes technically more difficult. We were wrong. We now understand it's the cruising speed that matters, not the momentary flash of peak power".
 
  
 
== Regional lockout ==
 
== Regional lockout ==
 
Nintendo initially stated that while the Nintendo 64 units for each region use essentially identical hardware design, [[regional lockout]] chips would prevent games from one region from being played on a Nintendo 64 console from a different region. Following the North American launch, however, they admitted that the cartridges contain no such chips, and the regional lockout is enforced by differing notches in the back of the cartridges.
 
Nintendo initially stated that while the Nintendo 64 units for each region use essentially identical hardware design, [[regional lockout]] chips would prevent games from one region from being played on a Nintendo 64 console from a different region. Following the North American launch, however, they admitted that the cartridges contain no such chips, and the regional lockout is enforced by differing notches in the back of the cartridges.

Revision as of 22:57, 8 January 2019

Nintendo 64
Nintendo 64 Logo.png
Nintendo-64-wController-L.jpg
A charcoal grey Nintendo 64 console and grey controller
Also known as Project Reality (code name), Ultra 64 (planned product name)
Developer Nintendo IRD
Manufacturer Nintendo
Type Home video game console
Generation Fifth generation
Release date JP: June 23, 1996
BRA: September 29, 1996
EU: March 1, 1997
AUS: March 1, 1997
Retail availability 1996–2002
Discontinued WW: April 30, 2002
Units sold Worldwide: 32.93 million
Japan: 5.54 million
Americas: 20.63 million
Europe & Australia: 6.75 million
Media Nintendo 64 Game Pak
Magnetic disc (64DD)
CPU 64-bit NEC VR4300 @ 93.75 MHz
Memory 4 MB Rambus RDRAM (8 MB with Expansion Pak)
Storage 64 MB Game Pak
Removable storage 256 Kbit (32 KB) Controller Pak
Graphics SGI RCP @ 62.5 MHz
Sound 16-bit, 48 or 44.1 kHz stereo
Controller input Nintendo 64 controller
Power Switching power supply, 12V and 3.3V DC
Online services Randnet (Japan only)
SharkWire Online (third-party)
Best-selling game Super Mario 64, 11.62 million (as of May 21, 2003)
Predecessor Super Nintendo Entertainment System
Successor GameCube

Introduction

The Nintendo 64, stylized as NINTENDO64 and abbreviated as N64, is Nintendo's third home video game console for the international market. Named for its 64-bit central processing unit, it was released in June 1996 in Japan, September 1996 in North America and Brazil, March 1997 in Europe and Australia, and September 1997 in France. It is the last major home console to use the cartridge as its primary storage format until Nintendo's seventh console, the Nintendo Switch, released in 2017. The console was discontinued in mid-2002 following the launch of its successor, the GameCube, in 2001.

Codenamed "Project Reality", the Nintendo 64 design was mostly complete by mid-1995, but its launch was delayed until 1996, when Time named it Machine of the Year.<ref name="Fisher"/> It was launched with three games: Super Mario 64 and Pilotwings 64 (worldwide) and Saikyō Habu Shōgi (exclusive to Japan). As part of the fifth generation of gaming, the system competed primarily with the Sony PlayStation and the Sega Saturn. The suggested retail price at its United States launch was Template:USD, and 32.93 million units were sold worldwide. The console was released in a range of colors and designs over its lifetime. In 2015, IGN named it the 9th greatest video game console of all time.

Specifications

Hardware

The Nintendo 64 motherboard, showing CPU, RCP, and RDRAM

The Nintendo 64's central processing unit (CPU) is the NEC VR4300. Popular Electronics said it had power similar to the Pentium processors found in desktop computers. Except for its narrower 32-bit system bus, the VR4300 retained the computational abilities of the more powerful 64-bit MIPS R4300i, though software rarely took advantage of 64-bit data precision operations. Nintendo 64 games generally used faster (and more compact) 32-bit data-operations, as these were sufficient to generate 3D-scene data for the console's RSP (Reality Signal Processor) unit. In addition, 32-bit code executes faster and requires less storage space (which is at a premium on the Nintendo 64's cartridges).

In terms of its random-access memory (RAM), the Nintendo 64 is one of the first modern consoles to implement a unified memory subsystem, instead of having separate banks of memory for CPU, audio, and video, for example. The memory itself consists of 4 megabytes of Rambus RDRAM. The RAM is expandable to 8 MB with the Expansion Pak. Rambus was quite new at the time and offered Nintendo a way to provide a large amount of bandwidth for a relatively low cost.

Audio may be processed by the Reality Coprocessor or the CPU and is output to a DAC with up to 48.0 kHzsample rate.

The system allows for video output in two formats: composite video and S-Video. The composite and S-Video cables are the same as those used with the preceding SNES and succeeding GameCube platforms.

The Nintendo 64 supports 16.8 million colors. The system can display resolutions from 320 × 240 up to 640 × 480 pixels. Most games that make use of the system's higher resolution 640 x 480 mode require use of the Expansion Pak RAM upgrade; several do not, such as Acclaim's NFL Quarterback Club series and EA Sports's second generation Madden, FIFA, Supercross, and NHL games. The majority of games use the system's low resolution 320 × 240 mode. A number of games also support a video display ratio of up to 16:9 using either anamorphic widescreen or letterboxing.

The Nintendo 64 is one of the first gaming consoles to have four controller ports. According to Shigeru Miyamoto, Nintendo opted to have four controller ports because the Nintendo 64 is the company's first console which can handle a four player split screen without significant slowdown.

Components

Template:See also

The Nintendo 64 motherboard, showing CPU, RCP, and RDRAM

Central processing unit

CPU-NUS VR4300 central processing unit

The Nintendo 64's central processing unit (CPU) is the NEC VR4300,<ref name="NECVR4300">"Main specifications of VR4300TM-series". NEC. Retrieved May 20, 2006.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> a licensed variant of the 64-bit MIPS Technologies R4300i, itself a cost-reduced derivative of the MIPS R4200. Built by NEC on a 0.35 µm process, the VR4300 is a RISC 5-stage scalar in-order execution processor, internal 24 KB direct-mapped<ref>"R4300i MICROPROCESSOR" (PDF). mips. Archived from the original (PDF) on October 30, 2007. Retrieved March 5, 2009.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles> </ref> L1 cache (16 KB for instructions, 8 KB for data). Although a floating-point unit exists as a logical coprocessor, there is no dedicated physical FPU datapath on the VR4300; instead, the integer pipeline is shared for this purpose, meaning that floating-point instructions will stall the pipeline.<ref name="NECUSERSMANUAL">"User's Manual. VR4300™, VR4305™, VR4310™ 64-bit Microprocessor" (PDF). NEC. 2000. p. 47, 208, 637, 639. Retrieved September 1, 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> The 4.6 million transistor CPU is cooled passively by an aluminum heatspreader that makes contact with a steel heat sink above.

With a clock rate of 93.75 MHz, the N64's VR4300 is generally considered to be the most powerful console CPU of the fifth generation of video game consoles.<ref>"Gaming consoles". Archived from the original on March 27, 2010. Retrieved January 11, 2009.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> Except for its narrower 32-bit system bus, the VR4300 retains the computational abilities of the 64-bit MIPS R4200,<ref name="NECVR4300"/> though few titles take advantage of 64-bit data precision operations. N64 game titles generally use faster and more compact 32-bit data-operations,<ref name="64 bit">"N64, God of all systems". Google Groups. July 26, 1997. Retrieved May 20, 2006.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref>Template:Self-published source as these are sufficient to generate 3D scene data for the console's RSP (Reality Signal Processor) unit. In addition, 32-bit code executes faster and requires less storage space, which came at a premium with contemporary technology. The CPU is constrained by a 250 MB/s bus to the system RAM, and in order to access the RAM, the CPU must go through the Reality Coprocessor (RCP), and can not use DMA to do so as the RCP can. This issue is further compounded by the RDRAM's high access latency.

Programs emulating the Nintendo 64 benefit from the scarcity of 64-bit operations in the game's executable code, especially when running with a 32-bit machine architecture as a host. Most of these emulators perform the majority of calculations at 32-bit precision and trap the few subroutines that actually make use of 64-bit instructions.<ref name="64 bit"/>Template:Self-published source

Reality Coprocessor

Template:Main

RCP-NUS "Reality Coprocessor"

Nintendo 64's graphics and audio duties are performed by the 64-bit SGI coprocessor, named the Reality Coprocessor, or RCP. The RCP is a 62.5 MHz chip split internally into two major components, the Reality Display Processor (RDP) and the Reality Signal Processor (RSP). Each area communicates with the other by way of a 128-bit internal data bus that provides 1.0 GB/s of bandwidth. The RSP is a MIPS R4000-based 128-bit integer vector processor. It is programmable through microcode, allowing the chip's functions to be significantly altered by each software title if necessary, to allow for different types of work, precision, and workloads. A number of microcodes were provided by Nintendo<ref>https://level42.ca/projects/ultra64/Documentation/man/pro-man/pro25/index25.1.html</ref><ref>http://n64devkit.square7.ch/qa/graphics/ucode.htm</ref>, while a few companies, such as Rare and Factor 5, would later develop their own microcodes. The RSP performs transform, clipping and lighting calculations, and triangle setup. The Reality Display Processor is primarily the Nintendo 64's pixel rasterizer, and also handles the console's Z-buffer compute.<ref name="NGen14"/>

Instead of a discrete sound processor, the RSP frequently performs audio functions, although the CPU can be tasked with this as well. It can play back most types of audio (dependent on software codecs) including uncompressed PCM, MP3, MIDI, and tracker music. The RSP is theoretically capable of a maximum of 100 channels of PCM at a time, but only in a case where all system resources are devoted to audio. It has a maximum sampling rate of 48 kHz with 16-bit audio. In practice, however, storage limitations caused by the ROM cartridge format limit the audio size and thus quality.<ref name="videogameconsolelibrary90">"Nintendo 64". Retrieved January 11, 2009.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> Some game titles are designed for higher quality audio when storage expansions are available, as with F-Zero X Expansion Kit.<ref>"Summary history of F-Zero". IGN. Archived from the original on June 15, 2009. Retrieved March 22, 2008.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref><ref name=history>Schneider, Peer (August 25, 2003). "Guides: F-Zero GX Guide (History)". IGN. Archived from the original on June 15, 2009. Retrieved August 8, 2007.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref>

The RDP performs rasterization, converting images into raster format before output to the display. The RCP also provides the CPU's access to main system memory via a 250 MB/s bus. Unfortunately, this link does not allow direct memory access for the CPU. The RCP, like the CPU, is passively cooled by an aluminum heatspreader that makes contact with a steel heat sink above.

Memory

Rambus RDRAM18-NUS, early 2-chip variant

The final major component in the system is the random-access memory, or RAM. Following its design heritage in SGI supercomputing, the Nintendo 64 implemented a unified memory architecture (UMA), instead of having separate banks of memory for CPU, audio, and video, as seen on its competitors. The RAM itself consists of 4.5 megabytes (0.5 MB for anti-aliasing) of Rambus RDRAM, fabricated by NEC. System RAM is expandable to a total of 9 MB with the Expansion Pak. The RAM has a 9-bit data bus at 250 MHz; as RDRAM transfers data at both the rising and falling edge of the signal (a technique also known as DDR), it provides the system with 562.5 MB/s peak bandwidth, shared between CPU and RCP.

Rambus technology was quite new at the time and offered Nintendo a way to provide a large amount of bandwidth at a relatively low cost. The narrow bus makes board design easier and cheaper than the higher width data buses required for high bandwidth out of slower-clocked RAM types (such as VRAM or EDO DRAM); this way, the N64 mainboard could be designed with only 2 layers. However, RDRAM, at the time, came with a very high access latency. The combination of high bandwidth and high latency meant that significant effort was required from developers to achieve optimal results.<ref name="videogameconsolelibrary90"/> Early N64 revisions use two 18 Mbit RAM chips; in ca. 1998 these were replaced with a single 36 Mbit chip, same as was used on the Expansion Pak.

The Nintendo 64 Game Pak ROM cartridges are so much faster than contemporary CD-ROM drives that data can be streamed in real-time from cartridges as if they are additional RAM, thus maximizing the efficiency of the system's RAM.<ref name="N64 Dev Conf 1997">"Nintendo Reveals New Details on 64DD at N64 Developer's Conference". Nintendo of America. 1997. Archived from the original on June 6, 1997. Retrieved January 11, 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> This was a common practice for developers of many games, such as Nintendo EAD's Super Mario 64<ref name="Shoshinkai 96 Panel at Nintendo.com">"Summary of Panel Discussion at Shoshinkai". Nintendo of America. Archived from the original on December 22, 1996. Retrieved January 11, 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> or Factor 5's Indiana Jones and the Infernal Machine.<ref name="IndyN64IGN">"Bringing Indy to N64 (Infernal Machine)". IGN. 2000-11-09. Retrieved 2008-03-27.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref>

Video

The system allows for video output in two formats: composite video<ref>"Nintendo Support: Nintendo 64 AV to TV Hookup". Nintendo. Retrieved February 28, 2010.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles></ref> and S-Video. This is accomplished through the proprietary "MULTI OUT" connector on the rear of the system, which was carried over from the SNES and later reused on the GameCube. Although the digital-to-analog converter chip used in early models had the capability to produce RGB video, it was not connected by default for this purpose, and later revisions lacked the pin connections for this purpose entirely.

The system came bundled with a composite cable (labeled Stereo A/V cable by Nintendo). Available separately (and included with the system in the UK)Template:Citation needed were a RF modulator and switch set (for connection to older televisions) and an official S-Video cable, although the latter was only sold at retail stores in Japan. In the U.S., the official S-Video cable could only be ordered direct from Nintendo of America, while in PAL territories, no S-Video cable was officially sold altogether. Furthermore, Nintendo omitted several components from the S-Video signal path in PAL consoles, meaning that using an unmodified NTSC S-Video cable will result in an overbright, garish image, or no image at all.

The system supports standard-definition resolutions up to 480i (576i for PAL units). Few games make use of this mode, and most of those which do also require use of the Expansion Pak RAM upgrade. Most games instead use the system's low-definition 240p (288p for PAL models) modes. A number of games also support widescreen display ratios using either anamorphic widescreen or letterboxing. Games with support for this include Banjo-Tooie, Donkey Kong 64, GoldenEye 007, 007: The World Is Not Enough, Jet Force Gemini, Perfect Dark, Starshot: Space Circus Fever, Turok 2: Seeds of Evil, Turok 3: Shadow of Oblivion, Mission Impossible, Hybrid Heaven, and South Park.Template:Citation needed

Regional lockout

Nintendo initially stated that while the Nintendo 64 units for each region use essentially identical hardware design, regional lockout chips would prevent games from one region from being played on a Nintendo 64 console from a different region. Following the North American launch, however, they admitted that the cartridges contain no such chips, and the regional lockout is enforced by differing notches in the back of the cartridges.